
On Multivariate Recursive Least Squares and Extensions

W. Cannon Lewis II∗

April 8, 2020

Abstract

Least squares estimation—also known as linear regression—is one of the fundamental tools underlying modern data

science and machine learning. Its typical exposition assumes a fixed dataset which is analyzed as a whole, but this

assumption is violated when data arrives in a stream over time. The least squares estimate can instead be computed

online using an algorithm known as recursive least squares. In this note we will derive the update equations for recursive

least squares applied to both centered and uncentered data. Additionally, we will draw connections between practical

implementations of recursive least squares and l2-regularized least squares, which is also known as ridge regression.

Contents

1 Notation 2

2 Problem Formulation 2

2.1 Static Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Centered Data 2

3.1 Breaking Up the Normal Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Deriving the Θ̂ Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.3 Deriving the PT Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Uncentered Data 4

4.1 Centered X, Uncentered Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.2 Uncentered X, Centered Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2.1 Deriving the QT Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2.2 Deriving the Θ̂ Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.3 Uncentered X, Uncentered Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Practical Extensions 7

5.1 Why Can’t We Just Modify the Feature Vector? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.2 Initializing PT and QT and Connections to Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.3 Forgetting Factors for Time-Varying Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

∗Rice University Computer Science Department (cannontwo.com)

1

http://cannontwo.com


1 Notation

Symbol Space Meaning

n N Input feature dimension
m N Output dimension
ϕt R1×n Feature vector at time t
µx(t) R1×n Feature mean at time t
Xt Rt×n Design matrix of stacked feature vectors from timesteps 0 to t
yt R1×m Output vector at time t

µy(t) R1×n Output mean at time t
Yt Rt×m Output matrix of stacked output vectors from timesteps 0 to t
Θ Rn×m True linear model coefficients

Θ̂ Rn×m Estimated model coefficients
Pt Rn×n Inverse sample covariance matrix
Qt Rn×n Inverse mean-corrected sample covariance matrix
Rt Rn×n Rank-2 update to corrected sample covariance matrix

Vt R2×n [
µx(t− 1)> ϕ>t

]>
1̄ Rt×1 A vector whose entries are all 1

Table 1: Notation used in this paper

In addition to the table above, we use the notation x> to represent the transpose of a matrix x.

2 Problem Formulation

Let us define a data stream as a function F (t) : N→ R1×n × R1×m that, for t ∈ N, can be defined as

F (t) := (ϕt, yt) (1)

where ϕt and yt are related according to

yt = ϕtΘ + εt, E [εt] = 0 (2)

Note that we assume that the output of the underlying linear model with true parameters Θ is corrupted at each time

step by some additive, zero-mean white noise εt. Since the purpose of this note is not to explore the statistical properties

of recursive least squares, we skip over further clarification of the properties of this noise; results follow from the standard

statistical analysis of linear regression [1].

2.1 Static Least Squares

If we wait to observe T ∈ N time steps of input-output pairs, we can assemble the matrices XT and YT by vertically stacking

the ϕt and yt observations for t = 1, . . . , T . Given these matrices, the least squares estimation problem is formulated as

min
Θ̂

=

>∑
t=1

||yt − ϕtΘ̂||22 (3)

= ||YT −XT Θ̂||22 (4)

It is well known (see, e.g., [1]) that the solution to this problem is given by the “normal equation”

Θ̂LS(T ) :=
(
X>T XT

)−1

X>T YT (5)

3 Centered Data

From Equation 5 we can begin to derive the recursive least squares estimator. It is worth noting at the beginning of this

derivation that we have implicitly assumed that our data is already centered; in other words, the relationship between ϕt

2



and yt has no offset term, and so our model Θ̂LS will always predict an output vector of all zeros for an input vector of

all zeros. This is a fine assumption when all of the data has been collected ahead of time, but breaks down when we want

to do recursive least squares because we cannot estimate the means of our inputs and outputs ahead of time. Since it is

easier to derive the recursive least squares estimator in the centered case than in the uncentered case, we tackle this limited

version first.

3.1 Breaking Up the Normal Equation

We begin by writing out the normal equation as two sums multiplied together

Θ̂LS(T ) = (X>T XT )−1X>T YT (6)

=

[
T∑
t=1

ϕ>t ϕt

]−1 [ T∑
t=1

ϕ>t yt

]
(7)

Let us define the inverse sample covariance matrix PT to be the left-hand term in Equation 7, so that we then have

P−1
T =

T∑
t=1

ϕ>t ϕt (8)

= P−1
T−1 + ϕ>T ϕT (9)

=⇒ P−1
T−1 = P−1

T − ϕ>T ϕT (10)

Similarly, we can break up the right-hand term in Equation 7:

T∑
t=1

ϕ>t yt =

T−1∑
t=1

ϕ>t yt + ϕ>T yT (11)

3.2 Deriving the Θ̂ Update

Our normal equation is now

Θ̂LS = PT ·

[
T−1∑
t=1

ϕ>t yt + ϕ>T yT

]
(12)

Using the definition of Θ̂LS(T − 1), we get

Θ̂LS(T ) = PT ·
[
P−1
T−1Θ̂LS(T − 1) + ϕ>T yT

]
(13)

Substituting in Equation 10:

Θ̂LS(T ) = PT ·
[
(P−1
T − ϕ>T ϕT )Θ̂LS(T − 1) + ϕ>T yT

]
(14)

= Θ̂LS(T − 1)− PTϕ>T ϕT Θ̂LS(T − 1) + PTϕ
>
T yT (15)

= Θ̂LS(T − 1) + PTϕ
>
T

[
yT − ϕT Θ̂LS(T − 1)

]
(16)

Note that the last term in Equation 16 (yT −ϕT Θ̂LS(T − 1)) is the prediction error of our model at timestep T − 1 on the

new datum, so the new estimate of Θ that we get is the old estimate plus the prediction error on a new datum filtered by

PTϕ
>
T . Intuitively, this represents a reweighting of the prediction error using our existing estimate of the sample covariance,

which effectively rescales the update to Θ to take into account the scales of the coordinates of the features.

3.3 Deriving the PT Update

Though Equation 9 gives us a way to update P−1
T easily with each new datum, to recover PT and update θ̂LS we would

need to invert an n × n matrix at on each time step. This is not only computationally expensive for all but small values

of n, it also introduces the risk of running into floating-point errors if P−1
T ever becomes ill-conditioned1.

We can get around these issues by doing away with P−1
T all together and deriving a direct update for PT . We do this

with the Woodbury matrix identity [3], also known as the “matrix inversion lemma.” This result tells us that for matrices

1These sorts of issues can also be dealt with using any number of techniques from numerical linear algebra [2]

3



A,U,C, V such that UCV has rank k, the inverse of the rank-k update is given by:

(A+ UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1 (17)

In our case, since we are doing a rank-1 update ϕ>T ϕT to P−1
T−1, this lemma gives us that

PT =
(
P−1
T−1 + ϕ>T ϕT

)−1

= PT−1 −
PT−1ϕ

>
T ϕTPT−1

1 + ϕTPT−1ϕ>T
(18)

And just like that, we’re done! Equations 16 and 18 give us the update equations that define the recursive least squares

algorithm. At each timestep t, we simply need to:

1. Record ϕt and yt from our datastream F (t).

2. Calculate Pt from Pt−1 and ϕt using Equation 18.

3. Calculate Θ̂LS(t) from Θ̂LS(t− 1), ϕt, yt, and Pt using Equation 16.

4 Uncentered Data

In the general linear regression setting, we cannot assume that the data is centered. We might have a persistent constant

offset vector added to the input features or the output which will cause the centered recursive least squares estimator to

be inaccurate or have worse generalization. In the static data regime, estimation of this constant offset can be done prior

to solving the least squares problem by calculating the feature and output means. In online estimation, we need to not

only update the means at each timestep but also to correct the previous parameter estimate with respect to the new mean

estimate. While the algebra becomes a bit more complex, the eventual structure of the update equations is remarkably

similar to the uncentered case.

In order to contain the complexity of the following derivation, we proceed in stages. First, we will consider the case when

the input features are centered but the output is not. Then we will consider the inverse case, where the input features are

not centered but the output is. We will then see how these two cases can be combined in the general uncentered recursive

least squares estimator.

4.1 Centered X, Uncentered Y

In this case we want to solve the problem

(yT − µy(T )) = ϕT Θ̂(T ) (19)

When the output data we are provided by F (t) are not already centered, we center it prior to solving the least squares

problem. Note that it is simple to calculate the output mean online, since

µy(T ) =
1

T

T∑
t=1

yt (20)

=
T − 1

T
µy(T − 1) +

1

T
yT (21)

=⇒ Tµy(T ) = (T − 1)µy(T − 1) + yT (22)

= Tµy(T − 1) + yT − µy(T − 1) (23)

=⇒ µy(T ) = µy(T − 1) +
1

T
(yT − µy(T − 1)) (24)

Thus the normal equation in this case is given by

(X>T XT )−1X>T (YT − 1̄µy(T )) = (X>T XT )−1X>T

(
YT − 1̄

1

T

T∑
t=1

yt

)
(25)

= (X>T XT )−1X>T YT − (X>T XT )−1X>T 1̄
1

T

T∑
t=1

yt (26)

4



Note that the first term in Equation 26 is just the normal equation for the centered least squares problem that we already

derived recursive update equations for, so all that remains is expanding the second term as

(X>T XT )−1X>T 1̄µy(T ) = PT

T∑
t=1

ϕ>t µy(T ) (27)

= T · PTµx(T )>µy(T ) (28)

Of course, in the current case µx = 0̄, so this correction term is actually zero and we recover the same update equations

as previously derived. However, Equation 28 will come in handy later when we derive the general uncentered update.

Even though the update equations are the same, the final prediction of our model includes a constant offset term that

we can derive from the model equation

(yT − µy(T )) = ϕT Θ̂LS(T ) (29)

=⇒ yT = ϕT Θ̂LS(T ) + µy(T ) (30)

4.2 Uncentered X, Centered Y

In this case we want to solve the problem

yT = (ϕT − µx(T ))Θ̂(T ) (31)

In the same way that we calculated the update equation for µy, we calculate

µx(T ) = µx(T − 1) +
1

T
(ϕT − µx(T − 1)) (32)

The normal equation for this case is given by

[
(XT − 1̄µx(t))>(XT − 1̄µx(t))

]−1

(XT − 1̄µx(t))>Y =[
(X>T XT −X>T 1̄µx(T )− (1̄µx(T ))>XT + µx(T )>µx(T )

]−1

(XT − 1̄µx(t))>Y (33)

Note that

X>T 1̄µx(T ) =

T∑
t=1

ϕ>t µx(T ) (34)

= Tµx(T )>µx(T ) (35)

Thus Equation 33 becomes

[
(X>T XT − 2Tµx(T )>µx(T ) + µx(T )>µx(T )

]−1

(XT − 1̄µx(t))>Y =[
(P−1
T − (2T − 1)µx(T )>µx(T )

]−1

(XT − 1̄µx(t))>Y (36)

Let us define, analogously to PT from before,

QT :=
[
P−1
T − (2T − 1)µx(T )>µx(T )

]−1

(37)

4.2.1 Deriving the QT Update

As with PT , we begin by developing an update for Q−1
T in terms of Q−1

T−1

Q−1
T = P−1

T − (2T − 1)µx(T )>µx(T ) (38)

= P−1
T−1 + ϕ>T ϕT −

2T − 1

T 2
((T − 1)µx(T − 1) + ϕT )>((T − 1)µx(T − 1) + ϕT ) (39)

As a side computation, and to avoid stacking even longer equations, let µ := µx(T − 1) and note

((T − 1)µ+ ϕT )>((T − 1)µ+ ϕT ) = (T − 1)2µ>µ+ (T − 1)µ>ϕT + (T − 1)ϕ>T µ+ ϕ>T ϕT (40)

5



With this, Equation 39 can be written as

Q−1
T = (P−1

T−1 − (2T − 1)µ>µ+ 2µ>µ)− 2µ>µ+ ϕ>T ϕT −
2T − 1

T 2

[
(−2T + 1)µ>µ+ (T − 1)µ>ϕT + (T − 1)ϕ>T µ+ ϕ>T ϕT

]
(41)

= (P−1
T−1 − (2(T − 1)− 1)µ>µ)− 2µ>µ+ ϕ>T ϕT +

2T − 1

T 2

[
(−2T + 1)µ>µ+ (T − 1)µ>ϕT + (T − 1)ϕ>T µ+ ϕ>T ϕT

]
(42)

= Q−1
T−1 − 2µ>µ+ ϕ>T ϕT −

2T − 1

T 2

[
(−2T + 1)µ>µ+ (T − 1)µ>ϕT + (T − 1)ϕ>T µ+ ϕ>T ϕT

]
(43)

One final expansion:

Q−1
T = Q−1

T−1 +
1

T 2

[
((2T + 1)2 − 2T 2)µ>µ− (2T − 1)(T − 1)µ>ϕT − (2T − 1)(T − 1)ϕ>T µ+ (T 2 − 2T + 1)ϕ>T ϕT

]
(44)

And now we can see that this can be written as

Q−1
T = Q−1

T−1 +
1

T 2

[
µx(T − 1)> ϕ>T

] [ (2T − 1)2 − 2T 2 −(2T − 1)(T − 1)

−(2T − 1)(T − 1) (T − 1)2

][
µx(T − 1)

ϕT

]
(45)

Let us define

CT :=
1

T 2

[
(2T − 1)2 − 2T 2 −(2T − 1)(T − 1)

−(2T − 1)(T − 1) (T − 1)2

]
(46)

VT :=

[
µx(T − 1)

ϕT

]
(47)

RT := V >T CTVT (48)

So that

Q−1
T = Q−1

T−1 +RT (49)

The Woodbury matrix identity (Equation 17) gives us, at the end of all this, an update rule for QT :

QT = QT−1 −QT−1V
>
T

(
C−1
T + VTQT−1V

>
T

)−1

VTQT−1 (50)

Note that this is a rank-2 update to QT−1, since we are using both the sample mean at time T − 1 and the new data at

time T to compute the update.

4.2.2 Deriving the Θ̂ Update

Returning to the normal equation

Θ̂LS(T ) = QT (XT − 1̄µx(T ))>Y (51)

= QTX
>Y −QTµx(T )>1̄>Y (52)

= QT
[
Q−1
T−1(t− 1)Θ̂LS(T − 1) + ϕ>T yT

]
− TQTµx(T )>µy(T ) (53)

= QTϕ
>
T yT +QT

[
Q−1
T −RT

]
Θ̂LS(T − 1)− TQTµx(T )>µy(T ) (54)

= Θ̂LS(T − 1) +QT
[
ϕ>T yT −RT Θ̂LS(T − 1)

]
− TQTµx(T )>µy(T ) (55)

Since in the current case we are assuming that Y is already centered, µy(T ) = 0̄ and the above reduces to

Θ̂LS(T ) = Θ̂LS(T − 1) +QT
[
ϕ>T yT −RT Θ̂LS(T − 1)

]
(56)

This corresponds roughly to the Θ̂ update in the centered case (Equation 16).

6



4.3 Uncentered X, Uncentered Y

We have finally arrived at the general case, in which our problem is expressed as

(yT − µy(T )) = (ϕT − µx(T ))Θ̂(T ) (57)

The normal equation for this case is[
(Xt − 1̄µx(T ))>(XT − 1̄µx(T ))

]−1

(XT − 1̄µx(T ))>(YT − 1̄µy(T ))

= QT (XT − 1̄µx(T ))>(YT − 1̄µy(T )) (58)

= QT (XT − 1̄µx(T ))>Y −QT (XT − 1̄µx(T ))>1̄µy(T ) (59)

Note that the first term in Equation 59 is the normal equation for the uncentered X, centered Y case previously analyzed.

Thus all that we need to do in order to derive the update for Θ̂ is expand the second term. This is easy, though, because

QT (XT − 1̄µx(T ))>1̄µy(T ) = QTX
>
T 1̄µy(T )−QTµx(T )>1̄>1̄µy(T ) (60)

= TQTµx(T )>µy(T )−QTµx(T )>µy(T ) (61)

= (T − 1)QTµx(T )>µy(T ) (62)

This, combined with the correction term in Equation 55 (which is now nonzero since we assume that µY (T ) 6= 0), gives us

a total correction of (2T − 1)QTµx(T )>µy(T ).

Since the update equation for QT depends only on ϕT and µx(T ), it only remains to give the final update equation for

Θ̂(T ) in the uncentered X, uncentered Y case. Combining Equation 56 with the previously stated correction term, we get

the following update:

Θ̂RAW (T ) = Θ̂RAW (T − 1) +QT
[
ϕ>T yT −RT Θ̂RAW (T − 1)

]
(63)

Θ̂LS(T ) = Θ̂RAW (T )− (2T − 1)QTµx(T )>µy(T ) (64)

Recall that our original problem in the uncentered case was

(yT − µy(T )) = (ϕT − µx(T ))Θ̂ (65)

Thus the prediction of the recursive least squares filter in the uncentered X, uncentered Y case for a new ϕ′ is given by

(ŷ′ − µy(T )) = (ϕ′ − µx(T ))Θ̂LS(T ) (66)

=⇒ ŷ′ = ϕ′Θ̂LS(T ) + (µy(T )− µx(T )Θ̂LS(T )) (67)

5 Practical Extensions

5.1 Why Can’t We Just Modify the Feature Vector?

In some data science and machine learning circles, a common ad hoc way to avoid centering data prior to solving the least

squares problem is to append a constant dimension to the feature vector, such that the new feature vectors are given by

λ′t =
[
λt 1

]
(68)

Intuitively, the intention of this technique is to add an additional offset parameter θ0 to the least squares estimated

parameters, which should then capture the constant offset term µy − µxΘ̂ which we calculated analytically above. In

practice, though, this technique gives rise to an entire one-dimensional subspace of possible solutions to the least-squares

problem, as can be shown using a bit of linear algebra, where the actual solution returned by solving the normal equations

is determined by the particular numerical algorithm used to invert the covariance matrix. The addition of a constant

feature to all input data makes the sample covariance matrix X>T XT low-rank, so that the inverse (X>T XT )−1 is ill-posed

and gives rise to a subspace of possible solutions. The best solution of this subspace in expectation is precisely the one

derived in Section 4, but the feature vector augmentation technique gives no guarantees of recovering this solution.

7



5.2 Initializing PT and QT and Connections to Ridge Regression

The update equations derived in Sections 3 and 4 tell use how to move from the least-squares solution at timestep T − 1

to the least-squares solution at timestep T , but they don’t tell us how the relevant matrices should be initialized. For all

involved matrices except PT (or QT , in the uncentered case), it is reasonable to initialize with matrices whose elements

are all 0. If we initialize PT or QT to zero matrices, however, Equations 18 and 50 show that these matrices will never be

updated at all (since the update equations are multiplicative in PT and QT , respectively).

This means that we need to initialize PT and QT to some nonzero matrix before beginning the recursive least squares

algorithm. In practice, this initialization matrix is usually chosen as some multiple of the identity, so that P0 = αI. This

has a significant effect on the computed Θ̂, however, as can be seen if we examine the real normal equation in this situation:

Θ̂REAL(T ) = (X>T XT +
1

α
I)−1X>T Y (69)

This is precisely the solution for the ridge regression problem (also known as l2 regularized least squares or Tikhonov

regularization) with regularization coefficient 1
α

. Thus any practical implementation of recursive least squares which keeps

around an estimate of the inverse covariance matrix (PT or QT in our notation) is in fact computing a ridge regression

estimator. This explains the common advice to use α ≈ 106; a large value for α corresponds to a low amount of l2

regularization, and hence closer approximation to the unregularized least squares solution.

5.3 Forgetting Factors for Time-Varying Systems

When the relationship between ϕt and yt is assumed to change over time, we need some way of prioritizing recent data

over historical data in recursive least squares. This is commonly done via a “forgetting factor” λ ∈ [0, 1]. λ is used to give

exponentially smaller weight to older samples in the regression in a way that can be intuitively explained by its extremal

values: when λ = 0 no datum prior to the current timestep is taken into account, and when λ = 1 we recover the recursive

least squares algorithm derived above. Common values of λ lie between 0.95 and 0.99.

The way that this is practically done is by reweighting the rows of the data matrix X and target matrix Y . Where

previously these were defined as simply the vertically stacked samples, we now define them as

X =



ϕT

λϕT−1

...

λT−2ϕ2

λT−1ϕ1


Y =



yT

λyT−1

...

λT−2y2

λT−1y1


(70)

Similarly we redefine µx(T ) and µy(T ) to be the means of these new matrices:

µx(T ) =
1

T

T∑
t=1

λT−tϕt µy(T ) =
1

T

T∑
t=1

λT−tyt (71)

By carrying this new X and Y through the same derivation as in the uncentered X, uncentered Y case above, we can

derive analogous matrices and update rules:

CT :=
1

λ2T 2

[
(2T − 1)2 − 2T 2 −(2T − 1)(T − 1)

−(2T − 1)(T − 1) (T − 1)2

]
VT :=

[
λµx(T − 1)

ϕT

]
(72)

RT := V >T CTVT (73)

QT =
1

λ2

[
QT−1 −QT−1V

>
T

(
C−1
T + VTQT−1V

>
T

)−1

VTQT−1

]
(74)

Θ̂RAW (T ) = Θ̂RAW (T − 1) +QT
[
ϕ>T yT −RT Θ̂RAW (T − 1)

]
(75)

Θ̂LS(T ) = Θ̂RAW (T )− (2T − 1)QTµx(T )>µy(T ) (76)

One final note is in order about the recursive least squares algorithm with λ-forgetting: The connection that we drew

8



earlier between the initialization of QT and l2 regularized least squares no longer holds, as the initial setting of QT is

multiplied by λ2 at each timestep, and so the equivalent regularization coefficient gets smaller with each new datapoint.

More precisely, the recursive least squares solution with λ-forgetting and an initialization of Q0 = αI will, at time T ,

compute the equivalent ridge regression solution

Θ̂REAL = (X>T XT +
1

αλ2T
)−1X>T Y (77)

This may be desirable if one wishes to smoothly interpolate between the ridge regression solution when little data is

available and the unregularized least squares solution in the limit of infinite data, but we are not aware of any existing

statistical analysis of this interpolation.

9



References

[1] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[2] Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50. Siam, 1997.

[3] Max A Woodbury. Inverting modified matrices. 1950.

10


	Notation
	Problem Formulation
	Static Least Squares

	Centered Data
	Breaking Up the Normal Equation
	Deriving the  Update
	Deriving the PT Update

	Uncentered Data
	Centered X, Uncentered Y
	Uncentered X, Centered Y
	Deriving the QT Update
	Deriving the  Update

	Uncentered X, Uncentered Y

	Practical Extensions
	Why Can't We Just Modify the Feature Vector?
	Initializing PT and QT and Connections to Ridge Regression
	Forgetting Factors for Time-Varying Systems


